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Executive Summary 

 

The objective of this D2.2 is to describe the data-driven demand 

prediction model used in the demand prediction module of 

SORTEDMOBILITY. In this report the role of the prediction model in the 

overall SORTEMOBILITY framework is first outlined. Subsequently we 

describe the modelling architecture, its input and output, how the 

output is used and the interfaces with other modules. This is followed 

by a technical overview of the prediction model details, a description of 

the data used to estimate the model, and the results obtained from 

estimation and numerical experiments. Finally, the report touches upon 

planned extensions of the model until the end of SORTEDMOBILITY. 

 



 

SORTEDMOBILITY 
Self-Organized Rail Traffic for the Evolution 

of Decentralized MOBILITY 

 

   

 

<Document code : SY-WP2-D2.2>  Page 4 of 29 

 

Table of contents 

1 INTRODUCTION7 

2 SORTEDMOBILITY FRAMEWORK8 

3 DEMAND PREDICTION MODULE11 

3.1 Introduction11 

3.2 Input and output11 

3.3 Module setup and structure13 

3.4 Use16 

3.5 Interfaces17 

4 MODELING ARCHITECTURE18 

4.1 Brief Outlook18 

4.2 Description20 

4.3 Benchmarks21 

5 CASE-STUDY22 

5.1 Overview22 

5.2 Data23 

5.3 Experimental set-up24 

6 RESULTS26 

7 EXTENSIONS28 

7.1 Tiny CPH28 

7.2 Full CPH28 

8 BIBLIOGRAPHY29 

 

 

 

 

  



 

SORTEDMOBILITY 
Self-Organized Rail Traffic for the Evolution 

of Decentralized MOBILITY 

 

   

 

<Document code : SY-WP2-D2.2>  Page 5 of 29 

 

Index of Figures 
 

Figure 1: Modelling framework of the centralized traffic management . 10 

Figure 2: Demand prediction and assignment module ...................... 14 

Figure 3: Overview of the GNN-based modelling approach used for OD 

demand prediction ..................................................... 16 

Figure 4: Architecture of the NRI model used for OD demand 

prediction................................................................. 18 

 

 

 

Index of Tables 
 

Table 1: Prediction error statistics for the different models considered.23 

Table 2: Prediction error statistics for the NRI model with and without 

supply information at different time periods. .................. 24 

 

  



 

SORTEDMOBILITY 
Self-Organized Rail Traffic for the Evolution 

of Decentralized MOBILITY 

 

   

 

<Document code : SY-WP2-D2.2>  Page 6 of 29 

 

 Table of abbreviations 

TSP Traffic State Prediction 

RTTP Real-Time Traffic Plan 

OD Origin-Destination 

AFC Automatic Fare Collection 

PAP Passenger Assignment Plan 

MNL Multinomial Logit 

CSV Comma-Separated Values 

GTFS General Transit Feed Specification 

XML Extensible Markup Language 

TAZ Traffic Analysis Zone 

DAS Day Activity Schedule  

GTFS General Transit Feed Specification 

GNN Graph Neural Network 

NRI Neural Relational Inference 

GRU Gated Recurrent Unit 

GCN Graph Convolutional Network 

CBTC Communications-Based Train Control 

RMSE Root Mean Squared Error 

MAE Mean Absolute Error 

  



 

SORTEDMOBILITY 
Self-Organized Rail Traffic for the Evolution 

of Decentralized MOBILITY 

 

   

 

<Document code : SY-WP2-D2.2>  Page 7 of 29 

 

1 INTRODUCTION 

SORTEDMOBILITY (Self-Organized Rail Traffic for the Evolution of 

Decentralized MOBILITY) aims at developing concepts, models and 

algorithms for self-organizing management of public transport operations 

in urban and interurban areas, specifically focusing on rail transport as a 

mobility backbone. In addition, a detailed simulation assessment platform 

will be developed to assess the proposed self-organization approach 

against a centralized one. 

This deliverable describes the data-driven demand prediction model used 

in the demand prediction module of SORTEDMOBILITY. The report first 

outlines the role of the prediction model in the framework. Next, it 

describes the module in which it operates, its input and output, how the 

output is used and the interfaces with other modules. This is followed by a 

technical overview of the prediction model architecture, a description of 

the data used to estimate the model, and the results obtained from 

experiments. Finally, the report touches upon planned extensions of the 

model. 
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2 SORTEDMOBILITY FRAMEWORK 

Conceptually, the modelling framework identifies the different actors and 

processes that are involved in train traffic management. We have 

developed a framework for the traffic management solution in 

SORTEDMOBILITY, depicted in Figure 1. The framework determines the 

way in which the control architecture interacts with the transport 

(simulation) system, identifying relevant flows of information to be 

included in a Traffic State and Demand Prediction to determine and 

implement the Real Time Traffic Plan (RTTP), which is the description of 

the train routes and schedules that are used within the project. 

The aim of the demand prediction module is to produce reliable estimates 

of passenger behaviour for the traffic control module to manage traffic 

such that it benefits the passengers. The module is data-driven in the 

sense that it does not use theoretical knowledge about passenger 

behaviour to calculate the trip distributions of passengers but rather 

historical data from a specific case study to “learn” correlations in those 

data. These data include information about the operations of the trains, 

also known as “supply”, and the behaviour of passengers, also known as 

“demand”. In a real or simulated environment, data on supply and 

demand are assumed to be collected as they become available, e.g., 

through a so-called smart card system.  

As depicted in Figure 1, the demand prediction module can be viewed as 

an integrated part of traffic control. It functions as a support for the 

automated dispatching module and also receives input from this module. 

Specifically, it receives supply input from the traffic state prediction and 

demand input from smart card streaming data, which is accessed through 

the control module. Notably, the supply data also include forecasts of 

traffic resulting from hypothesized traffic management decisions, so-called 

Real-Time Traffic Plans (RTTPs), for which the demand prediction model 

can produce predictions. The prediction consists of the origin-destination 

(OD) demand and the assignment of this demand to the expected future 

train runs, which is used in the control module optimization model to 

account for passengers in the decision-making. The prediction may come 

into play in two ways. Primarily, the prediction contains both expected and 
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desired arrival times at the destination for every passenger group, which 

enables a measure of passenger delay for different RTTPs. Secondly, the 

prediction includes a detailed list of train runs to which passenger groups 

are assigned and the connections they need in order to complete their 

journey. These connections can be accounted for in different ways in the 

traffic management optimization problem. The way the information in the 

prediction is used is independent of the prediction model. 
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Figure 1: Modelling framework of the SORTEDMOBILITY traffic management   

Train.    
Simulator 
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3 DEMAND PREDICTION MODULE  

3.1 Introduction 

The demand prediction module consists of two parts: a prediction model 

for the OD passenger demand and a model for assigning predicted 

demand to trains, thereby producing a prediction of the number of 

passengers in each train, their destinations and their route choice.  

At the beginning of a short time interval, e.g., of 5, 10 or 20 minutes, the 

prediction model forecasts OD passenger demand within this interval and 

a certain small number of intervals into the immediate future. Since traffic 

management and control require information on demand in terms of 

passengers in each train and the passengers’ destinations, a passenger 

assignment model transforms the OD prediction into a passenger 

assignment to individual trains in accordance with the RTTP. 

3.2 Input and output 

The input to the demand prediction model comprises: 

1. At the start of operations, historical records of observed demand for 

all OD pairs 

2. At the start of operations, historical records of observed traffic in the 

network, including realised timings at stations 

3. During operations, records of observed demand in terms of tap-in 

and tap-out locations and times of passengers in real-time 

4. During operations, records of observed and predicted traffic plans, 

including realised and predicted timings at stations 

Historical data (points 1 and 2) will come from databases collecting 

information on demand and supply, respectively. The demand data will 

typically come from an automatic fare collection (AFC), often based on 

smart cards, in which passengers interact with physical card readers at 

stations or in vehicles to record the time and location of entering, 

transferring, or exiting a public transport system or vehicle. The supply 

data may be recorded in an operations database by an operator or 

infrastructure manager and must include at least scheduled and realized 

arrival times of vehicles at all stations in the network of interest. 
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The real-time data (points 3 and 4) are recorded by these same systems 

as time passes. In a simulation, this will be carried out by the simulator, 

which must handle both operations of infrastructure, vehicles, and virtual 

passengers interacting with the transport system. In practice, the AFC 

system and the operations database will have to be updated almost 

immediately with the latest recorded data and then release it to the traffic 

management and the associated prediction module. 

The output of the prediction model is the estimated OD demand of 

travellers starting their journey in the current (and possibly near-future) 

time interval(s). 

The input to the assignment model comprises: 

a. A network-specific set of paths covering all OD pairs, each path 

consisting of combinations of lines available to connect origin and 

destination. These lines must correspond to the current traffic 

service. 

b. Specification of network-specific parameters of the statistical arrival 

distribution, which passengers are expected to follow at origin 

stations. The arrival distribution is in the form of a mixed Beta and 

Uniform distribution, corresponding to a mixture of passengers who 

are aware of the schedule (Beta) and passengers who are unaware 

(Uniform). Thus, the parameters must contain at least the mixture 

parameter (proportion of aware to unaware passengers) and the 

shape parameters of the Beta distribution. Note that these 

parameters may depend on the service headway. 

c. Specification of network-specific route choice parameters 

corresponding to the average user. The journey attributes are in-

vehicle travel time, waiting time, walking time (at transfers), and 

number of transfers. 

These inputs should have a relation to the transportation network and its 

users, i.e., they should ideally be calibrated on empirical data. For 

instance, the pathset in point a. should be computed based on observed 

paths in the AFC data, the arrival distribution parameters in point b. 

should be calibrated using observed arrival times dependent on train 
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departures, and the route choice parameters in point c. should be 

calibrated using a route choice model of users within the studied area. 

The output of the assignment model is a passenger assignment plan (PAP) 

consisting of the predicted OD demand distributed on passenger groups, 

grouped by OD pair, arrival time at origin, and chosen path and containing 

train-specific itineraries including departure and arrival times as well as 

transfers. 

3.3 Module setup and structure 

The prediction model exists on two operational levels. The first level is the 

training model, which essentially calibrates the parameters of the model 

with the goal of achieving the best generalized performance at 

deployment. The training is carried out using a large training data set and 

a smaller validation data set, each consisting of features related to 

historical demand observations as well as observations on the reliability of 

supply, such as frequency of service, train delays, and cancellations. The 

structure of the data associates several features with each time interval 

for which a demand prediction is needed. These features include observed 

demand from time intervals immediately preceding the one(s) to be 

predicted, as well as older observations providing context about the 

historical demand patterns. 

The features are extracted from the data such that no time interval 

features contain information that would only be available after the start of 

that interval, thereby simulating real-time information at each time 

interval. The training setup feeds the model with features for each time 

interval. The output of the model is compared to the target observed 

demand for the given time interval, and an optimization algorithm uses 

the deviation from the target to update the parameters of the model in an 

iterative manner. The generalized performance of the model is estimated 

by running the model on the validation data set, which is not used for 

parameter optimization. The training process is time-consuming but is 

only required to be re-run occasionally offline to update parameters with 

larger sets of new data.  

The second operational level is the deployment model, which is used in 

real time with the same feature types to predict the demand for the 
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current time interval. The deployment process is fast and is integrated 

with the traffic control algorithms in an online fashion. 

As the control algorithms do not accept the OD demand directly as input 

and instead need information on the distribution of this demand over the 

trains in the system, an assignment model is built on top of the OD 

demand prediction model. The goal of the assignment model is to assign 

the OD demand for a time interval (e.g., 20 minutes) to specific trains in 

order to maintain information about the passengers on each train, the 

origins of the passengers, their destinations, and their personalized 

journey plan, including start and end times of journey and transfers. 

The assignment module has several stages after the prediction model 

itself, see Figure 2. 
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Figure 2: Demand prediction and assignment module 

First, using knowledge on the static choice set of lines to take for a given 

OD pair, the model generates a pathset of specific train runs for each OD 

pair relevant to the passengers in the current time interval. This run-

based pathset consists of paths representing journeys, each containing an 

itinerary or sequence of train journey legs. Each journey leg is defined by 

an entry station, an exit station, and a train ID. Additionally, the journey 

leg contains information about the departure time of the train from the 

entry station and arrival time at the exit station. This way, the transfers 

included in the itinerary can be inferred. 

Then, based on the train departures at the origin station, the distribution 

of arrivals of the passengers at the station for the OD demand is 
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estimated. This arrival time, while discretized, is notably more detailed 

than the interval for the OD prediction, e.g., to a 1-minute resolution. This 

will associate a subset of paths available to each group of passengers with 

the same OD and similar arrival time. Based on the previously computed 

choice set itineraries, the discrete choice attributes of each compatible 

pair of path and origin arrival time are computed. These attributes include 

in-vehicle travel time, waiting time, walking time at transfers, and number 

of transfers, which all influence the choice of one path over another. 

Finally, the OD demand estimated by the demand prediction model is 

distributed on these paths according to a discrete choice model, 

specifically a multinomial logit (MNL) model, which stochastically 

simulates the choice of paths of passengers. However, instead of 

simulating a specific choice for each passenger, the overall distribution of 

demand based on the probabilities of the MNL model is used for the 

assignment of demand to each passenger group. The passenger groups 

are collected into a passenger assignment plan (PAP), which is the final 

output of the assignment module.  

Each passenger group is defined by the OD pair, the arrival time at the 

origin station, and the path chosen with a non-negative real-valued 

number assigned, which represents the expected number of passengers in 

the passenger group. Furthermore, the passenger group includes an 

estimate of the “desired” arrival time at the destination, which is 

computed based on the assignment plan using the nominal timetable 

instead of the RTTP. The “desired” arrival time is the weighted mean of 

the arrival time at the destination for that assignment plan. 

The set of passenger groups from the RTTP is used as input to the traffic 

management module, along with the information about the itineraries of 

those passenger groups. 

3.4 Use 

The model is called whenever an RTTP needs to be evaluated. This 

happens at set intervals at which the traffic management needs to resolve 

predicted conflicts. Concretely, it is first called to predict and assign 

demand for the RTTP as it is after letting the system run since the last 

evaluation. Then, the traffic management module produces one or several 

new RTTPs, and demand is predicted and assigned for each of these RTTPs 
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for evaluation in the optimizer. In this way, the optimizer receives 

feedback about the impact of each RTTP on the demand. The information 

used for evaluating the RTTP is the difference between the estimated 

arrival times at the destination and the estimated desired arrival time at 

the destination. This difference is equivalent to the personalized delay of 

the given passenger group, and one of the optimization objectives is to 

minimize this delay. Furthermore, the keeping of passenger-specific 

transfers can be ensured or encouraged in the optimization based on the 

itineraries in the PAP. 

3.5 Interfaces 

The prediction model only interacts with the control architecture, receiving 

observed passenger states from the traffic state prediction (TSP) and a 

timetable corrected for current delay perturbations in the form of an RTTP. 

The observed passenger states are in the form of tap-ins and tap-outs in a 

CSV file passenger by passenger, while the RTTP is in the standard format 

General Transit Feed Specification (GTFS), a collection of CSV files 

containing routes, stops, trips, and stop times. In return, the prediction 

model sends the output PAP in the form of an XML file to the control 

architecture.  
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4 MODELING ARCHITECTURE 

 

4.1 Brief Outlook 

The origin-destination (OD) demand prediction problem is formulated as a 

supervised machine-learning problem. To capture spatial correlations 

between demand across OD pairs, we use a graph neural network (GNN) 

where each OD pair corresponds to a node in the graph. The graph neural 

network then computes information at the node level (OD-pair) that will 

be propagated through the neighbouring nodes in the graph. The input of 

the model consists of features describing the recent state of each OD pair 

in the rail network (recent demand for each OD pair, information about 

delays and cancellations, etc.) - node-specific (local) features, as well as 

other relevant context information – global features (weather data, 

information about the time of day, day of week and special holidays, etc.). 

The output of the model consists of the demand predictions for each node 

in the graph (OD-pair) for the next time step t+1. Figure 2 depicts the 

modeling approach. A detailed description of the modelling methodology is 

provided in Section 4.2. Kindly note that this is a joint model of the 

demand that jointly considers all the information from all OD-pairs to 

produce demand predictions for all OD-pairs at once. 
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Figure 2: Overview of the GNN-based modelling approach used for OD demand prediction.
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4.2 Description 

A key challenge in applying GNNs for OD demand prediction is defining the 

graph connectivity. Recall from the previous section that, in our graph 

neural network formulation of the OD demand prediction problem, each 

OD pair corresponds to a node in the graph, and the connections between 

nodes represent dependencies/correlations between the observed demand 

in those nodes (OD pairs). While it is intuitive that the demand of a given 

OD pair should exhibit correlations with other OD pairs, there is no 

obvious way of pre-determining the dependencies in the graph - i.e., the 

graph adjacency matrix. A heuristic commonly used in the literature relies 

on spatial proximity between the origins and destination under the 

assumption that nearby stations should have similar demand. While this 

assumption is reasonable when considering aggregated demand at 

individual stations, its generalization to individual ODs is problematic since 

a given station may exhibit completely different demand patterns 

depending on the destination considered. Moreover, this approach 

assumes that the spatial correlations between demand at different OD 

pairs are static through time rather than dynamic.  

To overcome this limitation and entirely bypass the problem of defining an 

adjacency matrix, we employed the neural relational inference (NRI) 

framework from Kipf et al (2018), where the graph adjacency matrix is 

determined dynamically in a data-driven way through the use of a neural 

network – we refer to this neural network as the “Encoder”. The Encoder 

takes in as input the information (features) for each OD-pair and outputs 

the probability of each link being “active”. Together with a predefined cut-

off threshold for this probability (a hyper-parameter of the model), the 

Encoder then defines the graph that will be used by the GNN in the 

“Decoder” neural network – see Figure 3. For each time-step t, the 

Decoder takes as input the global and local features described in Section 

4.1 and the dynamic graph produced by the Encoder, and outputs a 

prediction for the demand at time t+1 for all nodes. In order for the 

Decoder to be able to model the temporal dependencies, we utilize a 

recurrent neural network, namely a Gated Recurrent Unit (GRU) cell, in 

the Decoder. The latent state h of the GRU at each time step t is 

determined based on message-passing neural architecture used by the 
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Graph Network framework proposed in (Tygesen, Pereira, & Rodrigues, 

2023).  At each time step t, each node computes a message (a numeric 

vector of a predefined length – a hyperparameter) to be sent out to its 

neighbours using a fully connected neural network. Each node then 

aggregates all incoming messages (vector) from its neighbours using 

summation. The aggregated vector is then provided as input to the GRU 

unit to determine the next latent state h for each node. A detailed 

description of this NRI modelling approach is provided (Tygesen, Pereira, 

& Rodrigues, 2023).   

 

Figure 3: Architecture of the NRI model used for OD demand prediction. 

u denotes global features, x denotes local features, q(z|x) represents 

the probability distribution of each link being active, while A denotes the 

adjacency matrix derived from q(z|x). The Decoder uses a GRU unit to 

model the latent state h at each time step t.   

4.3 Benchmarks 

Graph neural networks are state-of-the-art for spatiotemporal prediction 

problems in transportation (and also other domains), including OD-

demand prediction. The literature is vast on research papers 

demonstrating the superiority of GNNs over more traditional methods such 

as linear regression, auto-regressive models, historical average models, 

etc. (Tygesen, Pereira, & Rodrigues, 2023). Therefore, our main focus is 

on understanding the impact of different types of input features on the 

prediction error. Nevertheless, we still compare our NRI approach with a 

vanilla graph convolutional network (GCN), as well as with the state-of-

the-art approach for OD demand prediction (referred to as STZINB) as 

proposed in in (Zhuang, Shenhao, Koutsopoulos, & Zhao, 2022).   
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5 CASE-STUDY 

5.1 Overview 

The case study used for the development and evaluation of the demand 

prediction module is the Copenhagen suburban railway, the “S-bane”. This 

railway network consists of 170 km of electrified double track with 

homogenous passenger traffic, which is entirely separated from the long-

distance rail network. The annual number of passengers was 58.8 million 

in 2019 (Trafikstyrelsen, u.d.). The network is owned and managed by 

Banedanmark, operated by the national operator DSB, and has since 

September 2022 been running 100% on the communications-based train 

control (CBTC) system, which enables autonomous operation of trains, 

although this has not yet been realized. In addition to the train control 

system, the network is well integrated with Copenhagen's multi-modal 

transportation system, consisting of regional, suburban, and urban rail 

(Metro), with buses filling the gaps. 

All public transportation in the region is integrated into a zone-based fare 

system with almost entirely homogenous prices for all fares, the Metro 

being the exception. A common way of paying the fare is via the 

nationwide AFC system “Rejsekort”, which works as a smart card, where 

the user taps in and out of the system, and the fare is automatically 

calculated and charged. It is possible to combine the card with a 

commuter card. The locations and time stamps of the tap-in and tap-out 

(including transfers between modes) are recorded in a central database 

from which OD demand can be extracted. Although “Rejsekort” does not 

account for all demand in the network, it does represent the main fare 

collection source over short and medium distances in the Copenhagen 

region. 

Banedanmark, being responsible for the infrastructure, the timetable, and 

the traffic management, keeps records of the performance of traffic on the 

network, including timings of all train arrivals at stations. These data are 

kept in a database called “RDS” and contain information about each 

specific train arrival, including the train number, the direction of travel, 

the scheduled time of arrival, and the deviation from the schedule. 



 

SORTEDMOBILITY 
Self-Organized Rail Traffic for the Evolution 

of Decentralized MOBILITY 

 

   

 

<Document code : SY-WP2-D2.2>  Page 23 of 29 

 

Furthermore, the data indicate whether a train was cancelled. These data 

can be collected into time- and station-specific performance indicators 

pertaining to traffic volume, punctuality, and reliability. 

5.2 Data 

The “Rejsekort” data consists of smart card transactions with each line 

being a transaction. A transaction is an interaction between a card and a 

smart card terminal. The terminal might be located on a station platform 

or inside a vehicle. There are two types of such terminals, namely tap-in 

terminals and tap-out terminals. There are several types of transactions, 

which can broadly be divided into three main types, namely entry, 

transfer, and exit. Entry is a tap-in at the start of the journey, while exit is 

a tap-out at the end of the journey. Transfer is a tap-in during the 

journey, i.e., any tap-in happening after an initial tap-in but before a tap-

out. It is possible to transfer by tapping out and tapping in again within a 

certain amount of time, continuing the journey as if it were simply another 

successive tap-in.  

A journey is defined as a series of transactions starting with an entry and 

ending with an exit transaction. Each trip is assigned a trip ID. Since 

“Rejsekort” covers several modes and operators, each terminal is 

associated with a certain mode and operator, e.g., a terminal in a bus is 

assigned the mode “Bus” and the operator of the bus, while a terminal at 

a suburban rail station is assigned the mode “S-Train” and “DSB S-Train” 

as the operator. It is possible to track each individual card by a card ID, 

although this is pseudonymised, so it cannot be tied to a specific customer 

directly. Importantly, each transaction is associated with a stop name and 

ID, which is identical to the stop ID in the GTFS. Furthermore, each 

transaction is associated with a time stamp in local time. This timestamp 

is tied to the internal clock of the terminal, which has some uncertainty, 

especially if it is on board a vehicle. 

Using all the journey entry and exit transactions, we aggregate demand 

for each time interval, and each OD pair into the number of passengers 

travelling from a given origin to a given destination, having started their 

journey within a given time interval. The result of this process is used as 

the “true” demand with which the model will compare its own output and 
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from which it “learns”. However, the model also takes as input the 

observable demand for recent time intervals, i.e., at time interval 𝑡, the 

OD demand for time intervals 𝑡 − 1, 𝑡 − 2, etc., will be used as input, 

discounting the journeys that haven’t been concluded at the start of time 

interval 𝑡. Thus, the aggregation is also done for each pair of time 

intervals that are at most a certain number of time steps apart, also 

known as “lags”. 

The” RDS” data consist of timings of train arrivals at stations and are 

processed to collect information about reliability at each station during 

each time interval. Specifically, for each station, train line, and direction, 

we aggregate the total number of trains scheduled for arrival at the 

station, the mean deviation from the schedule in seconds, and the 

proportion of trains that were cancelled, all during the given time interval. 

These are used as supply input in the model. 

5.3 Experimental set-up 

The training and testing of the model are based on predicting OD demand 

for adjacent but non-overlapping 20-minute intervals. For the 

development of the prediction model, the data are split into a training set 

and a validation set for each experiment. In order to best discern 

differences in performance between models, an extensive period is 

selected for training and validation, respectively, and only the OD pairs 

carrying the most passenger volume, and thus with the most variation in 

demand, are selected for training. 

In Copenhagen, twelve OD pairs are selected: 

1. Nordhavn-Nørreport 

2. Nørreport-København H 

3. Lyngby-Nørreport 

4. Nørreport-Nordhavn 

5. København H-Nørreport 

6. Nørreport-Lyngby 

7. Hillerød-Nørreport 

8. Svanemøllen-Nørreport 

9. Hellerup-Nørreport 

10. Nørreport-Svanemøllen 
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11. Nørreport-Hillerød 

12. Østerport-Nørreport 

These constitute the twelve OD pairs with the highest average demand. 

Many of the stations reoccur, which, on the one hand, narrows the focus 

of the model and risks poor generalization of performance, but which, on 

the other hand, represents OD pairs which can interact through their 

similarity and thus capture replacement dynamics amongst each other. 

The training data consists of 52 weeks from January 29, 2017, through 

January 27, 2018, i.e., the model will see an entire year of data. The 

validation data consists of 20 weeks immediately following the training 

data period, i.e., from January 28 2018 through June 16 2018. There are 

72 time intervals of 20 minutes in a 24-hour period. Since most of the 

demand happens during the daytime, only the period 6 am through 10 pm 

is used, which amounts to 51 time intervals. All seven days of the week 

are included, which means that the training data contain 52x7x51=18564 

time intervals, each with 12 OD pairs. Similarly, the validation data 

contain 20x7x51=7140 time intervals. The model operates with eight lags 

of demand data. 

Kindly note that the training of the model should be done separately when 

varying either the period of the day to be investigated, the subset of OD 

pairs, or any combination of input variables. 
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6 RESULTS 

Table 1 shows the results for the different models for the 12 OD pairs 

described in the previous section. We report root mean squared error 

(RMSE) and mean absolute error (MAE) as metrics of prediction quality. 

Our analysis starts with the comparison between different models, namely 

GCN, STZINB and NRI. To simplify the comparison, we consider only the 

case where only information about the observed OD demand for the 

previous time steps (lags) is used as input for the models. As the results 

in Table 1 demonstrate, the NRI model obtained the lowest prediction error 

of the three. Interestingly, STZINB obtained the worst results, being even 

outperformed by a simple GCN model.  

After observing that the NRI model was providing the best results, we 

performed an ablation study on the input features of the model in order to 

understand their impact on the model's prediction error. From the results 

presented in Table 1, we can observe that, as expected, adding 

information to the neural network model generally leads to better 

prediction performance. Note that each row on results builds on the 

features of the previous row – i.e., “NRI - adding supply features” also 

includes “node ID” features. Interestingly, we can observe that weather 

and node ID features produce the greatest improvements in prediction 

performance. This suggests that the weather has an important impact on 

demand and that it is important for the graph neural network model to 

distinguish between different OD pairs (node ID) when propagating 

information in the graph – i.e., the propagation becomes conditional on 

which nodes are involved, rather than being generic across the graph. 

Unsurprisingly, including supply features as input to the model does not 

lead to a noticeable improvement in overall prediction performance (in 

fact, the prediction error is slightly worse). This is expected since supply 

disruptions are very rare events, and therefore, improvements made 

regarding modelling the impact of those events won’t be noticeable when 

analyzing the aggregate prediction error over the entire period of the test 

set. 
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 RMSE MAE 

GCN - with lags only 5.006 3.458 

STZINB – with lags only 5.159 3.663 

NRI - with lags only 4.921 3.449 

NRI - adding weather features 4.887 3.454 

NRI - adding day of week and time of day features 4.853 3.413 

NRI - adding node ID features 4.819 3.382 

NRI - adding supply features 4.824 3.390 

Table 1: Prediction error statistics for the different models considered. 

In order to better understand the impact of the supply features on the 

prediction error of the model, we analysed the RMSE and MAE for different 

time periods. Namely, we investigated the prediction error statistics for 

periods when there were cancellations at either the origin (O) or the 

destination (D). The results are presented in Table 2. As one can observe, 

for these time periods, there is a positive impact in including supply 

features (except for periods when the number of cancellations at origin is 

greater than 0). 

 

 RMSE MAE 

NRI without supply (all periods) 4.819 3.382 

NRI without supply (when cancellations at origin > 0) 5.287 3.897 

NRI without supply (when cancellations at origin > 1) 5.349 4.195 

NRI without supply (when cancellations at destination > 0) 5.303 3.983 

NRI without supply (when cancellations at destination > 1) 5.084 3.926 

NRI with supply (all periods) 4.824 3.390 

NRI with supply (when cancellations at origin > 0) 5.362 3.986 

NRI with supply (when cancellations at origin > 1) 5.296 4.150 

NRI with supply (when cancellations at destination > 0) 5.215 3.877 

NRI with supply (when cancellations at destination > 1) 4.993 3.858 

Table 2: Prediction error statistics for the NRI model with and without 

supply information at different time periods.  
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7 EXTENSIONS 

7.1 Tiny CPH 

In order to carry out experiments on the case study, two versions of the 

Copenhagen case study have been carried out, namely “tiny CPH” and 

“full CPH”, the former encompassing 12 contiguous stations in the network 

for preliminary testing and development, and the latter encompassing all 

84 stations in the 2017 version of the network. 

Tiny CPH consists of the area to the north of the centre of Copenhagen, 

starting with Nordhavn on the trunk line and fanning out to Ryparken, 

Sorgenfri, and Charlottenlund stations on the three northern fingers of the 

network carrying lines A, B, Bx, C, and E. Additionally, the ring line 

carrying line F is included between Nørrebro and Hellerup. This area 

includes all lines except line H, thus having a complex pattern of traffic 

with lines converging and diverging, sufficiently large demand volumes, 

and retaining the need for transfers for certain OD relations. 

With twelve stations and, therefore 132 OD pairs, the network is an order 

of magnitude larger than the dataset used for developing the prediction 

model. This entails heavier processing of input features and possibly 

extended training time along with marginally longer prediction time. If 

confronted with extensive slow-downs, it may be necessary to optimize 

certain areas of the framework. The data period used for training and 

validation may also be narrowed. 

7.2 Full CPH 

The entire network consists of 84 stations, meaning that as many as 6972 

OD pairs must be predicted for each time interval. This may be too much 

to handle in reasonable time and memory when training the prediction 

model and may slow down prediction. If code optimization is insufficient to 

mitigate the extra workload, it is possible to cut down on the number of 

OD pairs that need to be considered. This could, for instance, involve 

removing the OD pairs for which the average demand is below a certain 

threshold and using other assumptions for them. 
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