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1. Introduction 

Public transport route choice models are fundamental components in many transport 

applications, as they model and predict individuals’ route choice behavior and therefore help 

in assessing and improving public transport network design and performance. A route choice 

model consists of two main components: 1) choice set generation, which tries to enumerate 

all possible alternatives between origin and destination pairs; and 2) choice modeling of the 

chosen alternative from the generated choice set. This study focuses on the first component, 

as choice sets play a crucial role in understanding travel decision-making behavior. Several 

studies have shown that the composition and size of choice sets have a significant impact on 

both choice model estimation and demand prediction (Bovy, 2009; Swait & Ben-akiva, 

1987). Inaccurate choice sets could result in misspecification of choice models and introduce 

biases to forecasted demand (Bovy, 2009; Ortuzar & Willumsen, 2001). Studies on public 

transport route choice modelling have mainly relied on conventional choice set generation 

approaches used in road network applications, with some modifications to account for the 

differences between road and public transport networks (Tan, 2016). Namely, conventional 

approaches/algorithms such as k-shortest path (van der Zijpp & Catalano, 2005), multi-

objective path, simulation (Bekhor et al., 2006), branch and bound (Prato & Bekhor, 2006), 

labeling (Ben-Akiva et al., 1984), link elimination (Azevedo et al., 1993), and/or doubly 

stochastic (Nielsen, 2000) have been applied in several studies on public transport route 

choice models to generate exhaustive choice sets (e.g., Abdelghany & Mahmassani, 1999; 

Anderson et al., 2017; Benjamins et al., 2001; Friedrich et al., 2001; Tan et al., 2015). 

However, choice set generation is a complex and challenging task in dense urban public 

transport networks, due to the large number of possible route/path alternatives in such 
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networks. Enumerating all possible alternatives becomes challenging and impractical. In 

addition, it is unlikely that all enumerated alternatives are in reality considered by passengers 

(Gentile & Noekel, 2016). A choice set generation approach should ensure high coverage by 

generating enough paths to cover passengers’ choices but must also ensure high precision by 

including only paths that are relevant (Marra & Corman, 2020). In addition, the choice set 

size and quality of the generated alternatives may significantly affect parameter estimates 

(Frejinger et al., 2009; Zimmermann & Frejinger, 2020). However, defining relevant paths 

is not an objective task and cannot be easily cross-checked against actual passengers’ 

behavior, which complicates the evaluation of choice set quality. More recently, researchers 

have relied on observed Smart Card (SC) data, collected by Automated Fare Collection 

(AFC) systems, to generate choice sets (e.g., Arriagada et al., 2022; Lee & Sohn, 2015; Zhang 

et al., 2018). The high implementation rate of AFC systems in many countries enables them 

to cover nearly the entire population of travelers, resulting in substantial volumes of travel 

data over long periods of time (Bagchi & White, 2005). By using SC data, the observed routes 

are assumed to form the choice set of the corresponding origin-destination pairs. It is assumed 

that considering SC data over long periods of time should cover all relevant paths that are 

considered by passengers. 

This study will generate choice sets for a large multimodal public transport network using 

both conventional approaches and smart card data. It will evaluate and compare the two 

generated choice sets based on computational performance, coverage tests, and composition 

tests (size of choice set, diversity of alternatives, variations of path attributes etc.). In 

addition, route choice models will be developed using the conventional and observed choice 

sets and compared on the basis of statistical goodness-of-fit measures, interpretation of 

parameter estimates, and out-of-sample generalization performance. 

 

2. Choice sets generation 

2.1. Case Study 

This study focuses on the multimodal public transport network (buses, trains, and metros) in 

the East Great Belt area of Denmark which includes Zealand, the largest island in Denmark 

and home to its capital Copenhagen. The Danish Rejsekort (travel card in English) is the 

nationwide smart card system for traveling by public transport in Denmark. Under this 

system, passengers must tap-in at their origins and transfer locations and tap-out at their 

destinations. The Rejsekort system covers all public transport modes (buses, trains, and 

metros), transport operators, and travel zones in Denmark (Rejsekort, 2023). Each Rejsekort 

transaction stores information on the type of transaction (tap-in, transfer, or tap-out), time 

and location of the transaction, type of the card, and fake card ID (Rejsekort IDs are pseudo-

anonymized for privacy concerns). 
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2.2. Conventional choice set 

The General Transit Feed Specification (GTFS) data that includes stops, service lines, service 

line frequencies, and travel time information, in addition to the road network from Open 

Street Map (OMP) were used to build the network and compute path attributes such as in-

vehicle travel time, waiting time, number of transfers, walking time and path size (to account 

for path overlaps). A public transport graph was built containing a set of vertices and a set of 

edges connecting pairs of those vertices. The vertex set consists of bus stops, train and metro 

stations, and nodes form the road while the edge set connects the vertices with 4 different 

edge types: bus, train, metro, and walk. Note that an edge connecting a pair of vertices 

accounts for all common bus lines serving the same pair. The network consists of 11,419 bus 

stops, 1,425 bus lines, 244 train and metro stations, 46 train and metro lines, 124,368 nodes 

(from the road network), and 784,603 road segments. To sum up, the graph consists of 

136,031 vertices and 3,513,457 edges. In-vehicle travel time was computed as the average 

scheduled travel time among all service lines on a specific route segment. A constant walking 

speed of 4 km/h was considered for walking time calculations. Waiting time was calculated 

based on the overall frequencies of common service lines on a specific route segment as 

follows: 

𝑊𝑇𝑟 =
1

2 ∑ 𝑓𝑖
𝐼
𝑖=1

 
(1) 

Where 𝑊𝑇𝑟 is the expected waiting time on route segment 𝑟, 𝑓𝑖 the frequency of line 𝑖, and 

𝐼 the total number of service lines on route segment 𝑟. 

Next, one day of smart card data (19 September 2017) was selected and all observed stop-to-

stop (origin-destination - OD) trips were extracted. The one-day Rejsekort dataset contains, 

after several cleaning steps, 88,700 unique OD pairs. Then, the conventional choice set was 

created by generating for each OD pair a set of path alternatives using a combination of four 

choice set generation algorithms/approaches: k-shortest path, link elimination, labeling, and 

simulation. In total, paths for 86,128 unique OD pairs were generated for a coverage rate of 

98.88%. The high coverage rate was attained by correcting network errors and using a 

combination of algorithms/approaches. However, due to the large size of the network, 

building the network and correcting network errors proved to be a costly and time-consuming 

task that spanned several months. In addition, the choice set generation required two weeks 

of computation on a Linux system equipped with CPU @ 2.6 GHz and 196GB of RAM. The 

generated choice set has only 1.21% of OD pairs with one path/alternative and an average of 

7.79 alternatives per OD. 

 

2.3. Observed choice set  

For the observed path set, the same Rejsekort day (19 September 2017) was first selected, 

and paths were generated for each OD pair by considering all the observed trips that start and 

end within a radius of 400 meters of the origin and destination. A sensitivity analysis will be 
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performed to define the sensitivity and consistency of the results with respect to the radius. 

Note that travel time for each path was computed as the average travel time among all trips 

observed on that path. Number of transfers was also extracted for each path as passengers are 

required to tap-in at transfers. In addition, some heuristics were applied to check for hidden 

transfers where people forgot to tap-in. For instance, if a trip consists of two transactions, a 

tap-in and a tap-out, that happened at two different buses, then it is assumed that one transfer 

at least occurred on that path.   

However, the choice set showed that 54.38% of the OD pairs have only one path/alternative 

with an average of 2.17 alternatives per OD pair. Therefore, more Rejsekort weekdays were 

considered to increase the number of paths per OD and generate an exhaustive choice set. By 

increasing the number of weekdays from 1 to 20, the percentage of OD pairs with only one 

alternative drops from around 55% to around 14% (Figure 1) while the average number of 

alternatives per OD increases from 2.17 to 8.59 (Figure 2). A plateau effect could be seen in 

Figure 1. However, more weekdays will be added to the choice set generation process and 

the two measures from Figure 1 and 2 will be checked for convergence. In addition, waiting 

and walking time will be added to the path set. In terms of computational performance, it 

took less than 5 minutes to generate the choice set with 20 days of data on a Linux system 

equipped with CPU @ 3.8 GHz and 128GB of RAM. 

 

 

Figure 1: Percentage of OD pairs with one alternative across days 
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Figure 2: Average number of alternatives peer OD across days 

 

After finalizing the observed choice set based on smart card data as previously mentioned, 

the observed and conventional choice sets will be compared and evaluated. The evaluation 

will consider, in addition to the computational performance and the measures from Figure 1 

and 2, coverage tests and composition tests such as size of choice set, diversity of alternatives, 

variations of path attributes, etc. Such measures will help in assessing the quality of the 

generated choice sets and their suitability for later route choice model estimation. A choice 

set that has fewer alternatives than the observed ones could introduce biases in the parameter 

estimates of the route choice model and lead to false predictions/forecasts. Conversely, an 

excessively large number of alternatives would lead to computational inefficiencies and 

model estimation challenges (Tan, 2016). 

 

3. Route Choice Modelling  

Stop-to-stop multimodal route choice models will be developed using both the conventional 

and observed generated choice sets to evaluate their impact on the model’s goodness-of-fit, 

parameter estimates and potential biases, in addition to out-of-sample prediction accuracy.  

Path-size mixed logit models will be developed to account for correlation among alternatives 

due to path overlapping (Hoogendoorn-Lanser et al., 2005) and heterogeneity across 

passengers.  

In public transport networks, path overlapping is not solely limited to overlapping of 

alternatives along road segments, but it also includes overlapping of boarding stations (Tan, 

2016). At each boarding station, passengers have the flexibility to either continue along their 
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current path or change to another one. Therefore, path size factors accounting for roads and 

boarding stations overlaps will be added to the model. 

The utility of choosing alternative 𝑖 from a generated choice set 𝐶𝑛 in choice situation 𝑛 is 

expressed as follows: 

 

𝑈𝑖𝑛 = 𝛽𝑋
′ 𝑋𝑖𝑛 + 𝛽𝑃𝑆𝑃𝑆𝑖𝑛 + 𝛽𝑃𝑆_𝑛𝑜𝑑𝑒𝑃𝑆𝑖𝑛

𝑛𝑜𝑑𝑒 + 휀𝑖𝑛 (2) 

 

Where 𝑋𝑛𝑖 is a vector of attributes for path 𝑖, 𝛽𝑋 is a vector of corresponding fixed and 

random coefficients, 𝑃𝑆𝑛𝑖 and 𝑃𝑆𝑛𝑖
𝑛𝑜𝑑𝑒 are path size factors with 𝛽𝑃𝑆 and 𝛽𝑃𝑆_𝑛𝑜𝑑𝑒  their 

corresponding coefficients, and 휀𝑛𝑖 is a random disturbance term that is independently and 

identically distributed (𝑖𝑖𝑑) Extreme Value Type I over decision-makers and alternatives.  

𝑃𝑆𝑖𝑛 is a path-size factor that accounts for correlation due to overlapped road segments along 

path alternatives and is proportional to travel time as follows: 

𝑃𝑆𝑖𝑛 = ∑ (
𝑡𝑟

𝑇𝑖
) 𝑙𝑛 (

1

∑ 𝛿𝑟𝑗𝑗𝜖𝐶𝑛

)

 

𝑟𝜖Γ𝑖

 (3) 

Where 𝑡𝑟 is the travel time on segment 𝑟, 𝑇𝑖 is the total travel time of all segments on path 𝑖, 

Γ𝑖 is a set containing all segments along path 𝑖, and 𝛿𝑟𝑗 is a dummy that is equal to 1 if 

segment 𝑟 is part of path 𝑖 and 0 otherwise.  

𝑃𝑆𝑛𝑖
𝑛𝑜𝑑𝑒 is a path-size factor that accounts for correlation due to overlapped boarding 

stops/stations as follows: 

𝑃𝑆𝑛𝑖
𝑛𝑜𝑑𝑒 = ∑ 𝑙𝑛 (

𝑓𝑠𝑖

∑ 𝛾𝑠𝑗𝑓𝑠𝑗𝑗𝜖𝐶𝑛

)

 

𝑠𝜖𝑆𝑖

 (4) 

Where 𝑆𝑖 is the list of all boarding stops in path 𝑖 excluding origin (initial boarding stop), 𝑓𝑠𝑖 

is the boarding frequency over all shared service lines at boarding stop 𝑠 along path 𝑖, and 

𝛾𝑠𝑗 is a dummy that is equal to 1 if 𝑠 is a boarding stop in path 𝑗 and 0 otherwise. Under this 

formulation, a path containing overlapping boarding stations that are served by more frequent 

service lines will exhibit a large path-size and as such low negative impact on the overall 

path utility. On the contrary, a path containing overlapping boarding stations that are served 

with more frequent service lines will have a smaller path-size leading to more negative 

impact on the overall path utility. 

 

Finally, this study will compare two approaches for constructing choice sets for public 

transport route choice models. Through this analysis, we aim to provide insights regarding 

the optimal circumstances/applications for employing each approach, test their respective 

modeling strengths and weaknesses, and determine the necessary number of observations 

(e.g., in terms of days of smart card data) required for generating a choice set from observed 

smart card data.  
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